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Abstract. We present a new modular shape analysis that can synthesize heap

memory specification on a per method basis. We rely on a second-order bi-

abduction mechanism that can give interpretations to unknown shape predicates.

There are several novel features in our shape analysis. Firstly, it is grounded on

second-order bi-abduction. Secondly, we distinguish unknown pre-predicates in

pre-conditions, from unknown post-predicates in post-condition; since the former

may be strengthened, while the latter may be weakened. Thirdly, we provide a

new heap guard mechanism to support more precise preconditions for heap spec-

ification. Lastly, we formalise a set of derivation and normalization rules to give

concise definitions for unknown predicates. Our approach has been proven sound

and is implemented on top of an existing automated verification system. We show

its versatility in synthesizing a wide range of intricate shape specifications.

1 Introduction

An important challenge for automatic program verifiers lies in inferring shapes describ-

ing abstractions for data structures used by each method. In the context of heap ma-

nipulating programs, determining the shape abstraction is crucial for proving memory

safety and is a precursor to supporting functional correctness.
However, discovering shape abstractions can be rather challenging, as linked data

structures span a wide variety of forms, from singly-linked lists, doubly-linked lists,
circular lists, to tree-like data structures. Previous shape analysis proposals have made
great progress in solving this problem. However, the prevailing approach relies on us-
ing a predefined vocabulary of shape definitions (typically limited to singly-linked list
segments) and trying to determine if any of the pre-defined shapes fit the data struc-
tures used. This works well with programs that use simpler shapes, but would fail for
programs which use more intricate data structures. An example is the method below
(written in C and adapted from [19]) to build a tree whose leaf nodes are linked as a list.

struct tree { struct tree∗ parent; struct tree∗ l; struct tree∗ r; struct tree∗ next}
struct tree∗ tll(struct tree∗ x, struct tree∗ p, struct tree∗ t)
{ x->parent = p;
if (x->r==NULL) { x->next=t; return x; }
else{ struct tree∗ lm = tll(x->r, x, t); return tll(x->l, x, lm); } }

Our approach to modular shape analysis would introduce an unknown pre-predicate
H (as the pre-condition), and an unknown post-predicate G (as the post-condition), as
shown below, where res is the method’s result.

requires H(x, p, t) ensures G(x, p, res, t)



Using Hoare-style verification and a new second-order bi-abduction entailment
procedure, we would derive a set of relational assumptions for the two unknown pred-
icates. These derived assumptions are to ensure memory safety, and can be systemat-
ically transformed into concise predicate definitions for the unknown predicates, such
as: H(x,p,t) ≡ x7→tree(Dp,Dl,r,Dn) ∧ r=NULL

∨ x7→tree(Dp,l,r,Dn)∗H(l,x,lm)∗H(r,x,t) ∧ r 6= NULL

G(x,p,res,t) ≡ x7→tree(p,Dl,r,t) ∧ res=x∧r=NULL

∨ x7→tree(p,l,r,Dn)∗G(l,x,res,lm)∗G(r,x,lm,t)∧r6=NULL

Fig. 1. An example of G(x,p,res,t)

The derived pre-predicate H captures a bi-

nary tree-like shape that would be traversed by

the method. x7→tree(Dp,Dl,r,Dn) denotes that x

refers to a tree node with its parent,l,r and next

fields beingDp,Dl, r andDn, respectively. We use

dangling references, such asDl,Dp,Dn, as generic

markers that denote field pointers that are not traversed by the method. Thus no asser-

tion can be made on any of the D pointers. The post-predicate G, illustrated in Fig 1,

adds parent field links for all nodes, and next field links for just the leaves. 1

Current shape analysis mechanisms [12,4,6] are unable to infer pre/post specifications

that ensure memory-safety for such complex examples. In this paper, we propose a

fresh approach to shape analysis that can synthesize, from scratch, a set of shape ab-

stractions that ensure memory safety. The central concept behind our proposal is the use

of unknown predicates (or second-order variables) as place holders for shape predicates

that are to be synthesized directly from proof obligations gathered by our verification

process. Our proposal is based on a novel bi-abductive entailment that supports second-

order variables. The core of the new entailment procedure generates a set of relational

assumptions on unknown predicates to ensure memory safety. These assumptions are

then refined into predicate definitions, by predicate derivation and normalization steps.

By building the generation of the required relational assumptions over unknown

predicates directly into the new entailment checker, we were able to integrate our shape

analysis into an existing program verifier with changes made only to the entailment

process, rather than the program verification/analysis itself. Our proposed shape analy-

sis thus applies an almost standard set of Hoare rules in constructing proof obligations

which are discharged through the use of a new second-order bi-abductive entailment.

This paper makes the following four primary contributions.

– A novel second-order bi-abduction guided by an annotation scheme to infer rela-

tional assumptions (over unknown predicates) as part of Hoare-style verification.

– A set of formal rules for deriving and normalizing each unknown predicate defini-

tion from the relational assumptions with heap guard conditions.

– A sound and modular shape analysis, that is applied on a per method basis2.

– Our implementation and experiments on shape inference, closely integrated into an

automated verification system. The tool is available for online use (see Appendix

1 Note that new links formed by the method are colored in red.
2 Most existing shape analyses require either global analyses or re-verification after analysis.

For example, bi-abduction in [6] requires its method’s inferred pre-condition to be re-verified

due to its use of over-approximation on heap pre-condition which can be unsound.



C to download a virtual machine including S2’s source code) at

http://loris-7.ddns.comp.nus.edu.sg/˜project/s2/beta

2 Logic Syntax for Shape Specification

Separation logic is an extension of Hoare logic for reasoning with heap-based programs
[20,27]. We outline below the fragment underlying the proposed analysis:

Disj. formula Φ ::= ∆ | Φ1 ∨ Φ2

Guarded Disj. Φg ::= ∆ | (∆@ (κ∧π)) | Φg
1 ∨ Φg

2

Conj. formula ∆ ::= ∃v̄·(κ∧π)
Spatial formula κ ::= emp | ⊤ | v 7→c(v̄) | P(v̄) | U(v̄) | κ1∗κ2

Pure formula π ::= α | ¬α | π1∧π2

Var (Dis)Equality α ::= v|v1=v2|v=NULL|v1 6=v2|v 6=NULL

Pred. Defn. Pdef::= P(v̄) ≡ Φg

Pred. Dict. Γ ::= {Pdef1 , . . . , Pdefn }
P ∈ Known Predicates U ∈ Unknown Predicates

c ∈ Data Nodes v ∈ Variables v̄ ≡ v1. . .vn

We introduce ∆@ (κ∧π), a special syntactic form called guarded heap that capture a

heap context κ∧π in which ∆ holds. Thus, ∆@ (κ∧π) holds for heap configurations

that satisfy ∆ and that can be extended such that they satisfy ∆ ∗ κ∧π. In Sec.5 we

will describe its use in allowing our shape inference to incorporate path sensitive infor-

mation in the synthesized predicates. The assertion language is also extended with the

following formula for describing heaps: emp denoting the empty heap; ⊤ denoting an

arbitrary heap (pointed by dangling reference); points-to assertion, x 7→c(v̄), specifying

the heap in which x points to a data structure of type c whose fields contain the values

v̄; known predicate, P(v̄), which holds for heaps in which the shape of the memory

locations reachable from v̄ can be described by the P predicate; unknown predicates,

U(v̄), with no prior given definitions. Separation conjunction κ1∗κ2 holds for heaps that

can be partitioned in two disjoint components satisfying κ1 and κ2, respectively. The

pure formula captures only pointer equality and disequality. We allow a special constant

NULL to denote a pointer which does not point to any heap location. Known predicates

P(v̄) are defined inductively through disjunctive formulas Φg . Their definitions are ei-

ther user-given or synthesised by our analysis. We will use Γ to denote the repository

(or set) of available predicate definitions. Through our analysis, we shall construct an

inductive definition for each unknown predicate, where possible. Unknown predicates

that have not been instantiated would not have any definition. They denote data fields

that are not accessed by their methods, and would be marked as dangling pointers.

3 Overview of Our Approach

Our approach comprises three main steps: (i) inferring relational assumptions for un-

known predicates via Hoare-style verification, (ii) deriving predicates from relational

assumptions, (iii) normalizing predicates. For (i), a key machinery is the entailment

procedure that must work with second-order variables (unknown predicates). Previous

http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta


bi-abduction entailment proposals, pioneered by [6], would take an antecedent ∆ante

and a consequent ∆conseq and return a frame residue ∆frame and the precondition ∆pre,

such that the following holds: ∆pre∗∆ante � ∆conseq∗∆frame . Here, all four components

use separation logic formulas based on known predicates with prior definitions.
Taking a different tact, we start with an existing entailment procedure for separation

logic with user-defined predicates, and extend it to accept formulas with second-order
variables such that given an antecedent ∆ante and a consequent ∆conseq the resulting
entailment procedure infers both the frame residue ∆frame and a set (or conjunction) of
relational assumptions (on unknowns) of the form R =

∧n
i=1

(∆i ⇒ Φg
i) such that:

R ∧∆ante � ∆conseq∗∆frame

The inferred R ensures the entailment’s validity. We shall use the following notation

∆ante ⊢∆conseq ❀ (R, ∆frame) for this second-order bi-abduction process.
There are two scenarios to consider for unknown predicates: (1) ∆ante contains an

unknown predicate instance that matched with a points-to or known predicate in ∆conseq;
(2) ∆conseq contains an unknown predicate instance. An example of the first scenario is:

U(x) ⊢ x7→snode(n)❀ (U(x)⇒x7→snode(n)∗U0(n), U0(n))

Here, we generated a relational assumption to denote an unfolding (or instantiation)
for the unknown predicate U to a heap node snode followed by another unknown U0(n)
predicate. The data structure snode is defined as struct snode { struct snode∗ next}.
A simple example of the second scenario is shown next.

x7→snode(NULL)∗y7→snode(NULL) ⊢ U1(x)❀ (x7→snode(NULL)⇒U1(x), y7→snode(NULL))

The generated relational assumption depicts a folding process for unknown U1(x) which
captures a heap state traversed from the pointer x. Both folding and unfolding of un-
known predicates are crucial for second-order bi-abduction. To make it work properly
for unknown predicates with multiple parameters, we shall later provide a novel #-
annotation scheme to guide these processes. For the moment, we shall use this annota-
tion scheme implicitly. Consider the following method which traverses a singly-linked
list and converts it to a doubly-linked list (let us ignore the states α1, .., α5 for now):

struct node { struct node∗ prev; struct node∗ next}
void sll2dll(struct node∗ x, struct node∗ q)
{(α1) if (x==NULL) (α2) return; (α3) x->prev = q; (α4) sll2dll(x->next, x); (α5)}

To synthesize the shape specification for this method, we introduce two unknown
predicates, H for the pre-condition and G for the post-condition, as below.

requires H(x, q) ensures G(x, q)

We then apply code verification using these pre/post specifications with unknown pred-

icates and attempt to collect a set of relational assumptions (over the unknown predi-

cates) that must hold to ensure memory-safety. These assumptions would also ensure

that the pre-condition of each method call is satisfied, and that the coresponding post-

condition is ensured at the end of the method body. For example, our analysis can infer

four relational assumptions for the sll2dll method as shown in Fig. 2(a).

These relational assumptions include two new unknown predicates, Hp and Hn, cre-

ated during the code verification process. All relational assumptions are of the form



(A1).H(x, q) ∧ x=NULL⇒ G(x,q)

(A2).H(x, q) ∧ x6=NULL⇒

x7→node(xp, xn)∗Hp(xp, q)∗Hn(xn, q)

(A3).Hn(xn, q)⇒ H(xn, x)@ x7→node(q, xn)

(A4).x7→node(q,xn)∗G(xn,x)⇒ G(x,q)

(a)

(α1). H(x,q)

(α2). H(x, q)∧x=NULL

(α3). x7→node(xp,xn)∗Hp(xp,q)∗Hn(xn,q)∧x6=NULL

(α4). x7→node(q, xn)∗Hp(xp, q)∗Hn(xn, q)∧x6=NULL

(α5). x7→node(q, xn)∗Hp(xp, q)∗G(xn, x)∧x6=NULL

(b)

Fig. 2. Relational assumptions (a) and program states (b) for sll2dll

∆lhs⇒∆rhs, except for (A3) which has the form ∆lhs⇒∆rhs @∆g where ∆g denotes

a heap guard condition. Such heap guard condition allows more precise pre-conditions

to be synthesized (e.g. Hn in (A3)), and is shorthand for ∆lhs∗∆g⇒∆rhs∗∆g.
Let us look at how relational assumptions are inferred. At the start of the method, we

have (α1), shown in Fig. 2 (b), as our program state. Upon exit from the then branch, the
verification requires that the postcondition G(x, q) be established by the program state
(α2), generating the relational assumption (A1) via the following entailment:

(α2) ⊢ G(x,q) ❀ (A1, emp ∧ x=NULL) (E1)

To get ready for the field access x->prev, the following entailment is invoked to unfold
the unknown H predicate to a heap node, generating the relational assumption (A2):

H(x, q)∧x6=NULL ⊢ x7→node(xp,xn) ❀ (A2, Hp(xp,q)∗Hn(xn,q) ∧ x6=NULL) (E2)

Two new unknown predicates Hp and Hn are added to capture the prev (xp) and next

(xn) fields of x (i.e. they represent heaps referred to by xp and xn respectively). After
binding, the verification now reaches the state (α3), which is then changed to (α4) by
the field update x->prev = q. Relational assumption (A3) is inferred from proving the
precondition H(xn,x) of the recursive call sll2dll(x->next, x) at the program state (α4):

(α4) ⊢ H(xn, x) ❀ (A3, x7→node(q,xn)∗Hp(xp,q)∧x6=NULL) (E3)

Note that the heap guard x7→node(q, xn) from (α4) is recorded in (A3), and is crucial for
predicate derivation. The program state at the end of the recursive call, (α5), is required
to establish the post-condition G(x, q), generating the relational assumption (A4):

(α5) ⊢ G(x,q) ❀ (A4, Hp(xp,q)∧x6=NULL) (E4)

These relational assumptions are automatically inferred symbolically during code
verification. Our next step (ii) uses a predicate derivation procedure to transform (by
either equivalence-preserving or abductive steps) the set of relational assumptions into
a set of predicate definitions. Sec. 5 gives more details on predicate derivation. For our
sll2dll example, we initially derive the following predicate definitions (for H and G):

H(x, q) ≡ emp ∧ x=NULL ∨ x7→node(xp, xn) ∗ Hp(xp, q) ∗ H(xn, x)
G(x, q) ≡ emp ∧ x=NULL ∨ x7→node(q, xn) ∗ G(xn, x)

In the last step (iii), we use a normalization procedure to simplify the definition of

predicate H. Since Hp is discovered as a dangling predicate, the special variable Dp cor-

responds to a dangling reference introduced: H(x, q)≡ emp∧x=NULL∨x7→node(Dp, xn)∗

H(xn, x). Furthermore, we can synthesize a more concise H2 from H by eliminating its



useless q parameter: H(x, q)≡ H2(x) and H2(x)≡ emp∧x=NULL∨x7→node(Dp, xn)∗H2(xn).

The tll example. Let us revisit the tll example shown in Sec 1. To synthesize the

shape specification for this method, we introduce two unknown predicates, H for the

pre-condition and G for the post-condition, as mentioned earlier.

requires H(x, p, t) ensures G(x, p, res, t)

We then apply code verification using these pre/post specifications with unknown

predicates and attempt to collect a set of relational assumptions (over the unknown

predicates) that must hold to ensure memory-safety. These assumptions would also en-

sure that the pre-condition of each method call is satisfied, and that the post-condition

is ensured at the end of its method body.

For example, our analysis can infer the following five relational assumptions for the

tll method:

(1).H(x,p,t)⇒ x7→tree(xp,l,r,n)∗Hp(xp,p,t)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)
(2).Hr(r,p,t) ∧ r6=NULL@ x7→tree(p,l,r,n)⇒ H(r,x,t)
(3).Hl(l,p,t)⇒ H(l,x,lm)@ (x7→tree(p,l,r,n) ∧ r6=NULL)
(4).Hl(l,p,t)∗Hr(r,p,t)∗x7→tree(p,l,r,t)∧r=NULL∧res=x⇒ G(x,p,res,t)
(5).Hn(n,p,t) ∗ x7→tree(p,l,r,n) ∗ G(r,x,lm,t) ∗ G(l,x,res,lm)∧

r6=NULL⇒ G(x,p,res,t)

Our relational assumptions include four new unknown predicates, Hp, Hl, Hr and Hn,

that were created during the code verification process.
Let us look at how relational assumptions are inferred. For illustration, we annotate

program states into the tll example as follows:

struct tree∗ tll(struct tree∗ x, struct tree∗ p, struct tree∗ t) {
(S1)x->parent = p;
(S2)if (x->r==NULL) {(S3) x->next=t; return x; (S6)}

else{(S4) struct tree∗ lm = tll(x->r, x, t);(S5) return tll(x->l, x, lm); (S7) }
}

(S1). H(x,p,t)

(S2). x7→tree(p,l,r,n)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)∗Hp(xP,p,t)

(S3). x7→tree(p,l,r,n)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)∧r=NULL

(S4). x7→tree(p,l,r,n)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)∧r 6=NULL

(S5). x7→tree(p,l,r,n)∗Hl(l,p,t)∗G(r,x,lm,t)∗Hn(n,p,t)∧r 6=NULL

(S6). x7→tree(p,l,r,t)∗Hl(l,p,t)∗Hr(r,p,t)∧r=NULL∧res=x

(S7). x7→tree(p,l,r,n)∗G(l,x,res,lm)∗G(r,x,lm,t)∗Hn(n,p,t)∧r6=NULL

At the start of the method, we have (S1), shown above, as our program state. Due to

a field update, x->parent, relational assumption (1) was inferred which lead to (S2).

The conditional evaluation led to (S3) and (S4), as the program states at the start

of the then-branch and else-branch, respectively. Relational assumption (2) was then

inferred from proving pre-condition H(r, x, t) of recursive call tll(x->r, x, t) under

(S4), yielding program state (S5). Also, (3) was inferred from proving pre-condition

H(l, x, lm) of the second recursive call tll(x->l, x, lm). When inferring (3), heap guard

x7→tree(p, l, r, n)∧r6=NULL from the program state (S5) was used, since



Hl(l, p, t)⇒H(l, x, lm), by itself, neither capture a connected context r6=NULL from

the then-branch, nor properly instantiate the back (parent) pointer x. The program state

(S6) at the end of then-branch was then used to prove post-condition G(x, p, res, t).
This proving lead to relational assumption (4). Similarly, program state (S7) at the end

of the else-branch, which assumed G(r,x,lm,t)∗G(l,x,res,lm) from the two recursive

calls, would infer (5) when proving the post-condition of the method itself.

These relational assumptions are inferred symbolically during code verification with

the help of second-order bi-abduction mechanism that we are proposing. They are also

being modularly inferred on a per method basis, using automatically generated template

pre/post conditions with unknown predicates.

Our next phase uses a predicate synthesis and normalization procedure to transform

(by either equivalence-preserving or abductive steps) the set of relational assumptions

into a set of predicate definitions. For our running example, we synthesize the following

predicate definitions (for H and G):

H(x,p,t) ≡ x7→tree(Dp,Dl,r,Dn) ∧ r=NULL

∨ x7→tree(Dp,l,r,Dn)∗H(l,x,lm)∗H(r,x,t) ∧ r 6= NULL

G(x,p,res,t) ≡ x7→tree(p,Dl,r,t) ∧ res=x∧r=NULL

∨ x7→tree(p,l,r,Dn)∗G(l,x,res,lm)∗G(r,x,lm,t)∧r6=NULL

The variables Dl, Dp and Dn correspond to dangling predicates. Note that for mem-

ory safety, the input tree x must contain at least one node and that x->l must be non-

null when x->r is non-null. These requirements are captured by our synthesized pre-

predicate. Compared to some prior shape analyses, such as [12,16], which requires the

entire program to be available for analysis, our approach can perform this task modu-

larly on a per method basis instead.

Our approach currently works only for shape abstractions of tree-like data structures

with forward and back pointers. (We are unable to infer specifications for graph-like or

overlaid data structures yet.) These abstractions are being inferred modularly on a per

method basis. The inferred preconditions are typically the weakest ones that would

ensure memory safety, and would be applicable to all contexts of use. Furthermore, the

normalization step aims to ensure concise and re-useable predicate definitions. We shall

next elaborate and formalise on our second-order bi-abduction process.

4 Second-Order Bi-Abduction with an Annotation Scheme

We have seen the need for a bi-abductive entailment procedure to systematically han-

dle unknown predicates. To cater to predicates with multiple parameters, we shall use

an automatic #-annotation scheme to support both unfolding and folding of unknown

predicates. Consider a predicate U(v1, .., vn, w1#, .., wm#), where parameters v1, .., vn
are unannotated and parameters w1, .., wm are #-annotated. From the perspective of un-

folding, we permit each variable from v1, .., vn to be instantiated at most once (we

call them instantiatable), while variables w1, .., wm are disallowed from instantiation

(we call them non-instantiatable). This scheme ensures that each pointer is instanti-

ated at most once, and avoids formulae, like U3(y, y) or U2(r, y)∗U3(y, x#), from being

formed. Such formulae, where a variable may be repeatedly instantiated, may cause a



trivial FALSE pre-condition to be inferred. Though sound, it is imprecise. From the per-

spective of folding, we allow heap traversals to start from variables v1, .., vn and would

stop whenever references to w1, .., wm are encountered. This allows us to properly infer

segmented shape predicates and back pointers. Our annotation scheme is fully auto-

mated, as we would infer the #-annotation of pre-predicates based on which parameters

could be field accessed; while parameters of post-predicates are left unannotated. For

our running example, since q parameter is not field accessed (in its method’s body), our

automatic annotation scheme would start with the following pre/post specification:

requires H(x, q#) ensures G(x, q)
Unfold. The entailment below results in an unfolding of the unknown H predicate. It is
essentially (E2) in Sec 3, except that q is marked explicitly as non-instantiatable.

H(x, q#)∧x6=NULL ⊢ x7→node(xp, xn)❀ (A2, ∆1) (E2′)

With non-instantiatable variables explicitly annotated, the assumption (A2) becomes:

A2 ≡ H(x, q#)∧x6=NULL⇒ x7→node(xp, xn)∗Hp(xp, q#)∗Hn(xn, q#)

As mentioned earlier, we generated a new unknown predicate for each pointer field (Hp
for xp, and Hn for xn), so as to allow the full recovery of the shape of the data structure
being traversed or built. Note that each x, xp, xn appears only once in unannotated forms,
while the annotated q# remains annotated throughout to prevent the pointer from being
instantiated. If we allow q to be instantiatable in (E2′) above, we will instead obtain:

H(x, q)∧x6=NULL ⊢ x7→node(xp, xn)❀ (A2′, ∆′
1)

We get A2′ ≡ H(x, q)∧x6=NULL⇒ x7→node(xp, xn)∗Hp(xp, q#)∗Hn(xn, q#)∗U2(q, x#), where

the unfolding process creates extra unknown predicate U2(q, x#) to capture shape for q.
Our proposal for instantiating unknown predicates is also applicable when known

predicates appear in the RHS. These known predicates may have parameters that act
as continuation fields for the data structure. An example is the list segment lseg(x, p)
predicate where the parameter p is a continuation field.

ll(x) ≡ emp∧x=NULL ∨ x7→snode(n) ∗ ll(n)
lseg(x, p) ≡ emp∧x=p ∨ x7→snode(n) ∗ lseg(n, p)

Where snode (defined in the previous section) denotes singly-linked list node. Note
that continuation fields play the same role as fields for data nodes. Therefore, for such
parameters, we also generate new unknown parameters to capture the connected data
structure that may have been traversed. We illustrate this with two examples:

U(x) ⊢ ll(x)❀ (U(x)⇒ll(x), emp) U(x) ⊢ lseg(x, p)❀ (U(x)⇒lseg(x, q)∗U2(q), U2(p))

The first predicate ll(x) did not have a continuation field. Hence, we did not generate

any extra unknown predicate. The second predicate lseg(x, p) did have a continua-

tion field p, and we generated an extra unknown predicate U2(p) to capture a possible

extension of the data structure beyond this continuation field.
Fold. A second scenario that must be handled by second-order entailment involves
unknown predicates in the consequent. For each unknown predicate U1(v̄, w̄#) in the
consequent, a corresponding assumption ∆⇒U1(v̄, w̄#)@∆g is inferred where ∆ con-
tains unknown predicates with at least one instantiatable parameters from v̄, or heaps
reachable from v̄ (via either any data fields or parameters of known predicates) but
stopping at non-instantiatable variables w̄#; a residual frame is also inferred from the
antecedent (but added with pure approximation of footprint heaps [9]). For example,
consider the following entailment:



x7→snode(q)∗q7→snode(NULL)∧q6=NULL ⊢ U1(x, q#)❀ (Af1, ∆1)

The output of this entailment is:

Af1 ≡ x7→snode(q)∧q6=NULL⇒U1(x, q#) ∆1 ≡ q7→snode(NULL)∧x6=NULL∧x6=q

As a comparison, let us consider the scenario where q is unannotated, as follows:

x7→snode(q)∗q7→snode(NULL)∧q6=NULL ⊢ U1(x, q)❀ (Af2, ∆2)

In this case, the output of the entailment becomes:

Af2 ≡ x7→snode(q)∗q7→snode(NULL)⇒ U1(x, q) ∆2 ≡ x6=NULL∧q6=NULL∧x6=q

Moreover, the folding process also captures known heaps that are reachable from #-
parameters as heap guard conditions, e.g. x7→node(q, xn) in our running example (E3):

x7→node(q,xn)∗Hp(xp,q#)∗Hn(xn,q#)∧x6=NULL ⊢ H(xn, x#)
❀ (Hn(xn, q#)⇒ H(xn, x#)@ x7→node(q, xn), x7→node(q,xn)∗Hp(xp,q#)∧x6=NULL) (E3′)

Such heap guards help with capturing the relations of heap structures and recovering

those relationships when necessary (e.g. back-pointer x#).

Formalism. Bi-abductive unfold is formalized in Fig. 3. Here, slice(w̄, π) is an aux-

iliary function that existentially quantifies in π all free variables that are not in the set w̄.

[SO-ENT-UNFOLD]
κs ≡ r7→c(p̄) or κs ≡ P(r, p̄)

κfields = ∗pj∈p̄ Uj(pj, v̄i#, v̄n#), where Uj: fresh preds

κrem = Urem(v̄i, v̄n#, r#), where Urem: a fresh pred

πa = slice({r, v̄i, v̄n, p̄}, π1) πc = slice({p̄}, π2)
σ ≡ (U(r, v̄i, v̄n#) ∧ πa⇒ κs ∗κfields ∗κrem ∧ πc)
κ1 ∗ κfields ∗κrem ∧ π1 ⊢ κ2 ∧ π2 ❀ (R, ∆R)

U(r, v̄i, v̄n#)∗κ1∧π1 ⊢ κs∗κ2∧π2 ❀ (σ∧R, ∆R)

Fig. 3. Bi-Abductive Unfolding.

Thus it eliminates from π all

subformulas not related to w̄

(e.g. slice({x, q}, q=NULL∧y>3)

returns q=NULL). In the first

line, a RHS assertion, either a

points-to assertion r7→c(p̄) or a

known predicate instance P(r, p̄)

is paired through the parameter

r with the unknown predicate U.

Second, the unknown predicates Uj are generated for the data fields/parameters of κs.

Third, the unknown predicate Urem is generated for the instantiatable parameters v̄i of

U. The fourth and fifth lines compute relevant pure formulas and generate the assump-

tion, respectively. Finally, the unknown predicates κfields and κrem are combined in the

residue of LHS to continue discharging the remaining formula in RHS.

Bi-abductive fold is formalized in Fig. 4. The function reach(w̄, κ1∧π1, z̄#) extracts

portions from the antecedent heap (κ1) that are (1) unknown predicates containing at

least one instantiatable parameter from w̄; or (2) point-to or known predicates reachable

from w̄, but not reachable from z̄. In our running example (the entailment (E3′) on last

page), the function reach({xn}, x7→node(q, xn)∗Hp(xp, q#)∗Hn(xn, q#)∧x6=NULL, {x#}) is

used to obtain Hn(xn, q#). More detail on this function is in the appendix. The heaps(∆)
function enumerates all known predicate instances (of the form P(v̄)) and points-to in-

stances (of the form r7→c(v̄))) in ∆. The function root(κ) is defined as: root(r7→c(v̄)))={r},

root(P(r, v̄)) = {r}. In the first line, heaps of LHS are separated into the assumption

[SO-ENT-FOLD]
κ11=reach(w̄, κ1∧π1, z̄#) ∃κ12 · κ1=κ11∗κ12

κg = ∗{κ | κ∈heaps(κ12)∧root(κ)⊆z̄} r̄=
⋃

κ∈κg
root(κ)

σ ≡ (κ11∧slice(w̄, π1)⇒ Uc(w̄, z̄#)@κg∧slice(r̄, π1))
κ12 ∧ π1 ⊢ κ2 ∧ π2 ❀ (R, ∆R)

κ1 ∧ π1 ⊢ Uc(w̄, z̄#) ∗ κ2 ∧ π2 ❀ (σ∧R, ∆R)

Fig. 4. Bi-Abductive Folding.

κ11 and the residue κ12.

Second, heap guards (and

their root pointers) are in-

ferred based on κ12 and

the #-annotated parameters



z̄. The assumption is gen-

erated in the third line and

finally, the residual heap is

used to discharge the remaining heaps of RHS.

Hoare Rules. We shall now present Hoare rules to show how second-order entailment is

used there. For simplicity, we consider a core imperative language (Fig. 5) that supports

heap-based data structures (datat) and methods (meth).

Prog ::= datat∗ meth∗ datat ::= data c { field∗ }
field ::= t v t ::= int | bool | void | c | . . .
meth ::= t mn (([ref] t v)∗) Φpr Φpo; {e}
e ::= NULL | kτ | v | v.f | v=e | v.f=e | new c(v∗)

| e1; e2 | t v; e | mn(v∗)| if v then e1 else e2

Fig. 5. The Core Language

A method declaration includes a

header with pre-/post-condition

and its body. Methods can

have call-by-reference parame-

ters (prefixed with ref). Loops,

including nested loops, are trans-

formed to tail-recursive methods

with ref parameters to capture mutable variables. To support shape analysis, code ver-

ification is formalized as a proof of quadruple: ⊢ {∆pre} e {R, ∆post}, where R accu-

mulates the set of relational assumptions generated by the entailment procedure. The

specification may contain unknown predicates in preconditions and postconditions. We

list in Fig. 6 the rules for field access, method calls and method declaration. Note that

primed variable (e.g. x′) denotes the latest value (of the program variable x). The for-

mula ∆1∗̄v∆2 denotes ∃r̄· ([r̄/v̄′]∆1) ∗([r̄/v̄]∆2) (see [9]).

[SA-CALL]
t0 mn ((ref ti vi)

m−1
i=1, (tj vj)

n
j=m) Φpr Φpo; {e} ∈ Prog

ρ=[v′k/vk]
n
k=1 Φ′

pr = ρ(Φpr) W={v1, .., vm−1} V={vm, .., vn}
∆ ⊢ Φ′

pr ❀ (R, ∆2) ∆3=(∆2 ∧
∧n

i=m
(v′i = vi)) ∗V∪W Φpo

⊢ {∆} mn(v1, .., vm−1, vm, .., vn) {R,∆3}

[SA-FLD-RD]
data c {t1 f1, .., tn fn} ∈ Prog

∆1 ⊢ x
′ 7→c(v1..vn)❀ (R, ∆3)

∆4=∃v1..vn · (∆3∗x
′ 7→c(v1..vn)∧res=vi)

⊢ {∆1} x.fi {R, ∆4}

[SA-METH]
⊢ {Φpr∧

∧

(u′=u)∗} e {R1, ∆1}
∆1 ⊢ Φpo ❀ (R2, ∆2)
Γ = solve(R1∪R2)

t0 mn ((t u)∗) Φpr Φpo {e}

Fig. 6. Several Hoare Rules

The key outcome is that if a solution for the set of relational assumptions R can be

found, the program is memory-safe and all the methods abide by their specifications.

Furthermore, we propose a bottom-up verification process which is able to incremen-

tally build suitable predicate instantiations one method at a time by solving the collected

relational assumptionsR progressively. The predicate definition synthesis (solve) con-

sists of two separate operations : predicate synthesis, PRED SYN, and predicate normal-

ization, PRED NORM. That is solve(R) = PRED NORM(PRED SYN(R)). After the method

is successfully verified, the resulting predicate definitions Γ provide an interpretation

for the unknown predicates appearing in the specifications such that memory safety is

guaranteed. By returning Γ, the method verification allows the inferred definitions and

specifications to be consistently reused in the verification of the remaining methods.



5 Derivation of Shape Predicates

Once the relational assumptions have been inferred, we proceed to apply a series of

refinement steps to derive predicate definitions for each pre- and post-predicate. Fig. 7

function PRED SYN(R)

Γ ← ∅
R ← exhaustively apply [syn-base] onR
Rpre,Rpost ← sort-group(R)

whileRpre 6=∅ do

Upre, σ ← pick unknown & assumption inRpre

U
pre

def← apply [syn-case], [syn-group-pre], and

[syn-pre-def] on σ
Rpre,Rpost ← inline U

pre

def in (Rpre\σ), Rpost

discharge Upre obligations

Γ ← Γ ∪ {Upredef}
end while

whileRpost 6=∅ do

Upost, σ ← pick unknown & assumption inRpost

U
post

def ← apply[syn-group-post], [syn-post-def] on σ
discharge Upost obligations

Rpost ←Rpost \ σ Γ ← Γ ∪ {Upostdef }
end while

return Γ
end function

Fig. 7. Shape Derivation Outline

outlines our strategy for pred-

icate synthesis. We use the

[syn-∗] notation to name re-

finement rules. For space rea-

sons, we describe some rules

and leave the rest to the ap-

pendix B. Steps that are left

out include: (i) sort-group to de-

cide on the transformation or-

der of relational assumptions;

(ii) [syn-Pre/Post-Obl] to process

some relational assumptions as

proof obligations. For exam-

ple, if the result of the recur-

sive method is field-accessed af-

ter the recursive call, the post-

predicate would appear as an

unknown predicate for heap in-

stantiation. This must be pro-

cessed as an entailment obliga-

tion, after the definition of its

post-predicate has been derived; (iii) inline to unfold synthesized predicates in the re-

maining assumptions.

5.1 Base Splitting of Pre/Post-Predicates

We first deal with relational assumptions of the form Upre(. . .)∗∆ ⇒ Upost(. . .), which
capture constraints on both a pre-predicate and a post-predicate. To allow greater flexi-
bility in applying specialized techniques for pre-predicates or post-predicates, we split
the assumption into two assumptions such that pre-predicate Upre is separated from post-
predicate Upost. Base splitting can be formalized as follows:

[syn-base]
σ : Upre(x̄)∗κ∧π⇒ Upost(ȳ) σ1 : Upre(x̄)∧slice(x̄, π)⇒emp σ2 : κ∧π⇒ Upost(ȳ)

κg=∗{κ1 | κ1∈heaps(κ)∧pars(κ1)∩x̄6=∅} w̄=
⋃

{pars(κ1) | κ1∈κg}
σ3 : Upre(x̄)⇒Ufr(x̄)@κg∧slice(x̄∪w̄, π) σ4 : Ufr(x̄)⇒⊤

if is base(x̄, π)=true then (σ1∧σ2) else (σ∧σ3∧σ4)

The premise contains an assumption (σ) which could be split. The conclusion captures

the new relational assumptions. There are two scenarios:

(1) The first scenario takes place when the test is base(x̄, π) holds. It signifies that π
contains a base case formula for some pointer(s) in x̄. Note that is base(x̄, π) holds if
and only if (∃ v∈x̄. π ⊢ v=NULL) or (∃v1,v2∈x̄.π ⊢ v1=v2). In such a situation, the as-
sumption σ is split into σ1 and σ2. This reflects the observation that a pre-predicate



guard will likely constrain the pre-predicate to a base-case with empty heap. This sce-
nario happens in our running example where the assumption (A1) is split to:

(A1a). H(x, q) ∧ x=NULL⇒ emp (A1b). emp ∧ x=NULL⇒ G(x,q)

(2) If the test is base(x̄, π) fails, there is no base case information available for us to

instantiate Upre(x̄). The assumption σ is not split and kept in the result. To have a more

precise derivation, we would also record the fact that Upre(x̄) has no instantiation under

the current context. To do this, in the second line we record in κg such a heap context (re-

lated to x̄), extract in w̄ related pointers from the context, and introduce a fresh unknown

predicate Ufr as the instantiation for Upre, as indicated by the assumption σ3 in the third

line. Note the heap guard specifies the context under which such an assumption holds.

We also add σ4 into the result, where the new predicate Ufr is instantiated to the afore-

mentioned memory locations (encapsulated by⊤). Assumptions of the form Ufr(p)⇒ ⊤

are being used to denote dangling pointers. We also note that introducing the dangling

predicate Ufr into the guarded assumption σ3 is essential to help relate non-traversed

pointer fields between the pre-predicate Upre and the post-predicate Upost. The function

pars(κ) (the 2nd line) retrieves parameters: pars(r7→c(v̄))) = v̄, pars(P(r, v̄)) = v̄.
As an example, consider splitting (σ5) : Upre(p)∗x7→node(p,n)∧n=NULL⇒ Upost(x).

The test is base({p}, n=NULL) fails. In addition to (σ5), the splitting returns also

(σ6) : U
pre(p)⇒ Ufr(p)@ (x7→node(p,n)∧n=NULL) (σ7) : U

fr(p)⇒ ⊤

For the tll example in Sec 3, the [syn-base] transformation can be applied to as-
sumption (4) yielding the following three new assumptions:

(4a) res7→tree(p,l,r,t)∗Hl(l,p,t)∧r=NULL∧res=x⇒ G(x,p,res,t)

(4b) Hr(r, p, t) ∧ r=NULL⇒ emp

(4c) Hl(l,p,t)⇒ Hfl(l,p,t)@ (res 7→tree(p,l,r,t)∧r=NULL)

(4d) Hfl(l,p,t)⇒ ⊤

Pre-predicate Hr captures r=NULL as its base-case split. Pre-predicate Hl uses a

heap guard for its base context, and ⊤ to denote an un-accessed dangling heap residue

encapsulated in Hfl.

5.2 Deriving Pre-Predicates

Pre-predicates typically appear in relational assumptions under pure guards π, of the
form Upre(. . .)∧π⇒∆. To derive definitions for these pre-predicates, the first step is to
transform relational assumptions that overlap on their guards by forcing a case analysis
that generates a set of relational assumptions with disjoint guard conditions:

[syn-case]
U(x̄)∧π1⇒∆1 @∆1g U(x̄)∧π2⇒∆2 @∆2g π1∧π2 6⇒FALSE

∆1∧∆2⇒
x̄
∧∆3 ∆1g∧∆2g⇒

x̄
∧∆3g SAT(∆3g)

U(x̄)∧π1∧¬π2⇒∆1 @∆3g U(x̄)∧π2∧¬π1⇒∆2 @∆3g U(x̄)∧π1∧π2⇒∆3 @∆3g

For brevity, we assume a renaming of free variables to allow x̄ to be used as arguments
in both assumptions. Furthermore, we use the ⇒x̄

∧ operator to denote a normaliza-
tion of overlapping conjunction, ∆1∧∆2 [27]. Informally, in order for ∆1 ∧ ∆2 to



hold, it is necessary that the shapes described by ∆1 and ∆2 agree when describing
the same memory locations. Normalization thus determines the overlapping locations,
∆c such that ∆1=∆c∗∆′

1
and ∆2=∆c∗∆′

2
and returns ∆c∗∆′

1
∗∆′

2
. We leave a formal

definition of ⇒x̄
∧ to the appendix B.5. Once all the relational assumptions for a given

pre-predicate have been transformed such that the pure guards do not overlap, we may
proceed to combine them using the rule [syn-group-pre] shown below. We shall perform
this exhaustively until a single relational assumption for U is derived. If the assump-
tion RHS is independent of any post-predicate, it becomes the unknown pre-predicate
definition, as shown in the rule [syn-pre-def] below.

[syn-group-pre]
U(x̄)∧π1⇒ Φg

1 U(x̄)∧π2⇒ Φg

2 π1∧π2⇒ FALSE

U(x̄) ∧ (π1∨π2)⇒ Φg

1∧π1 ∨ Φg

2∧π2

[syn-pre-def]
Upre(x̄)⇒Φg no post(Φg)

Upre(x̄) ≡ Φg

For the sll2dll example, applying the [syn-group-pre] rule to (A2) and (A1a) yields:

(A5). H(x, q)⇒ x7→node(xp, xn)∗Hp(xp, q)∗Hn(xn, q) ∨ emp ∧ x=NULL

For the tll example, by the above rules, (2) and (4b) yield:

(6). Hr(r,p,t) ≡ H(r,x,t)∧r6=NULL@ x7→tree(p,l,r,n) ∨ emp∧r=NULL

Similarly, (3) and (4c) derives Hl:.

(7). Hl(l,p,t) ≡ H(l,x,lm)@ x7→tree(p,l,r,n)∧r6=NULL

∨ Hfl(l,p,t)@ x7→tree(p,l,r,n)∧r=NULL

This is then trivially converted into a definition for its pre-predicate, without any

weakening, thus ensuring soundness of our pre-conditions.

5.3 Deriving Post-Predicates

We start the derivation for a post-predicate after all pre-predicates have been derived.
We can incrementally group each pair of relational assumptions on a post-predicate via
the [syn-group-post] rule shown below. By exhaustively applying [syn-group-post] rule all
assumptions relating to predicate Upost get condensed into an assumption of the form:
∆1 ∨ . . . ∨ ∆n ⇒ Upost(x̄). This may then be used to confirm the post-predicate by
generating the predicate definition via the [syn-post-def] rule.

[syn-group-post]
∆a ⇒ Upost(x̄) ∆b ⇒ Upost(x̄)

∆a ∨∆b ⇒ Upost(x̄)

[syn-post-def]
∆1 ∨ . . . ∨∆n ⇒ Upost(x̄)

Upost(x̄) ≡ ∆1 ∨ . . . ∨∆n

Using these rules, we can combine (A4) and (A1b) in the sll2dll example to obtain:

G(x, q) ≡ emp ∧ x=NULL ∨ x7→node(q, xn) ∗ G(xn, x)

Using these rules, we can combine (4a) and (5) in the tll example to give:

G(x,p,res,t) ≡ x7→tree(p,l,r,t)∗Hl(l,xh,th) ∧ res=x∧r=NULL

∨x7→tree(p,l,r,n)∗G(r,x,lm,t)∗G(l,x,res,lm)∗Hn(n,xh,th)∧r6=NULL



5.4 Predicate Normalization for Concise Definitions

After we have synthesized suitable predicate definitions, we proceed with predicate

normalization to convert each predicate definition to its most concise form. Our current

method, PRED NORM, uses four key steps: (i) eliminate dangling predicates, (ii) eliminate

useless parameters, (iii) re-use predicate definitions and (iv) perform predicate splitting.

We briefly explain the normalization steps and leave details in the appendix B.7. The

first step deals with dangling predicates which do not have any definition. Though it

is safe to drop such predicates (by frame rule), our normalization procedure replaces

them by special variables, to help capture linking information between pre- and post-

conditions. The second step eliminates predicate arguments that are not used in their

synthesized definitions, with the help of second-order entailment. The third step lever-

age on our entailment procedure to conduct an equivalence proof to try to match a newly

inferred definition with a definition previously provided or inferred. Lastly, to increase

the chance for such predicate reuse, we allow predicates to be split into smaller predi-

cates. This is again done with the help of second-order entailment procedure, allowing

us to undertake such normalization tasks soundly and easily.

6 Soundness Lemmas and Theorem

Here we briefly state several key soundness results, and leave the proof details to the

appendix E. For brevity, we introduce the notation R(Γ) to denote a set of predicate in-

stantiations Γ={U1(v̄1)≡∆1, ..Un(v̄n)≡∆n} satisfying the set of assumptionsR. That is, for

all assumptions ∆⇒ Φg ∈ R, (i) Γ contains a predicate instantiation for each unknown

predicate appearing in ∆ and Φg ; (ii) by interpreting all unknown predicates according

to Γ, then it is provable that ∆ implies Φg , written as Γ : ∆ ⊢ Φg .

Soundness of bi-abductive entailment. Abduction soundness requires that if all the

relational assumptions generated are satisfiable, then the entailment is valid.

Lemma 1. Given the entailment judgement ∆a ⊢∆c ❀ (R, ∆f), if there exists Γ such

that R(Γ), then the entailment Γ : ∆a ⊢ ∆c ∗∆f holds.

Derivation soundness. For derivation soundness, if a set of predicate definitions is con-

structed then those definitions must satisfy the initial set of assumptions. We argue that

(i) assumption refinement does not introduce spurious instantiations, (ii) the generated

predicates satisfy the refined assumptions, (iii) normalization is meaning preserving.

Lemma 2. Given a set of relational assumptions R, let R′ be the set obtained by ap-

plying any of the refinement steps, then for any Γ such that R′(Γ), we have R(Γ).

Lemma 3. If R contains only one pre-assumption on predicate Upre,Upre(v̄)⇒Φg and

if our algorithm returns a solution Γ, then (Upre(v̄)≡Φg)∈ Γ. Similarly, if R has a sole

post-assumption on Upost, Φ⇒Upost and if solution Γ is returned, then (Upost(v̄)≡Φ)∈ Γ.

Lemma 4. Given a set of assumptions R, if PRED SYN(R) returns a solution Γ then

R(Γ). Furthermore, if PRED NORM(Γ) returns a solution Γ′ then R(Γ′).

Theorem 6.1 (Soundness) If ∆a ⊢∆c ❀ (R, ∆f) and Γ=PRED NORM(PRED SYN(R)) then

Γ : ∆a ⊢ ∆c ∗∆f.



7 Implementation and Experimental Results

We have implemented the proposed shape analysis within HIP [9], a separation logic

verification system. The resulting verifier, called S2, uses an available CIL-based [26]

translator 3 from C to the expression-oriented core language. Our analysis modularly

infers the pre/post specification for each method. It attempts to provide the weakest

possible precondition to ensure memory safety (from null dereferencing and memory

leaks), and the strongest possible post-condition on heap usage patterns, where possible.

Expressivity. We have explored the generality and efficiency of the proposed analy-

Example
w/o norm. w/ norm.

Veri.
size Syn. size Syn.

SLL (delete) 9 0.23 2 0.29 0.22

SLL (reverse) 20 0.21 8 0.22 0.2

SLL (insert) 13 0.2 11 0.21 0.2

SLL (setTail) 7 0.16 2 0.18 0.16

SLL (get-last) 20 0.7 17 0.75 0.21

SLL-sorted (c) 11 0.26 2 0.27 0.22

SLL (bubblesort) 13 0.28 9 0.36 0.26

SLL (insertsort) 15 0.3 11 0.3 0.27

SLL (zip) 20 0.27 2 0.32 0.24

SLL-zip-leq 20 0.27 2 0.27 0.25

SLL + head (c) 12 0.24 2 0.71 0.2

SLL + tail (c) 10 0.19 2 0.72 0.18

skip-list2 (c) 9 0.28 1 0.32 0.25

skip-list3 (c) 9 0.36 1 0.46 0.3

SLL of 0/1 SLLs 8 0.25 1 0.26 0.23

CSLL (c) 17 0.18 2 0.23 0.21

Example
w/o norm. w/ norm.

Veri.
size Syn. size Syn.

CSLL (t) 8 0.22 5 0.23 0.24

CSLL of CSLLs (c) 18 0.24 4 0.23 0.22

SLL2DLL 18 0.19 2 0.2 0.18

DLL (check) 8 0.21 2 0.23 0.19

DLL (append) 11 0.2 8 0.2 0.2

CDLL (c) 23 0.22 8 0.26 0.21

CDLL of 5CSLLs (c) 28 0.39 4 0.66 1.3

CDLL of CSLLs2 (c) 29 0.33 4 0.44 0.29

btree (search) 33 0.23 2 0.24 0.23

btree-parent (t) 11 0.23 2 0.29 0.24

rose-tree (c) 14 0.28 14 0.3 0.23

swl (t) 19 0.23 13 0.27 22

mcf (c) 19 0.26 17 0.28 0.26

tll (t) 21 0.23 2 0.25 0.21

tll (c) 21 0.29 2 0.32 0.19

tll (set-parent) 39 0.24 2 0.35 0.24

Table 1. Experimental Results (c for check and t for traverse)

sis through a number of small but challenging examples. We have evaluated programs

which manipulate lists, trees and combinations (e.g. tll: trees whose leaves are chained

in a linked list). The experiments were performed on a machine with the Intel i7-960

(3.2GHz) processor and 16 GB of RAM. Table 1 presents our experimental results. For

each test, we list the name of the manipulated data structure and the effect of the veri-

fied code under the Example column. Here we used SLL,DLL,CLL,CDLL for singly-,

doubly-, cyclic-singly-, cyclic-doubly- linked lists. SLL + head/tail for an SLL where

each element points to the SLL’s head/tail. SLL of 0/1 SLLs uses an SLL nested in a

SLL of size 0 or 1, CSLL of CSLLs for CSLL nested in CSLL, CDLL of 5CSLLs for

an CDLL where each node is a source of five CSLL, and CDLL of CSLLs2 for CDLL

where each node is a nested CSLL. The skip lists subscript denotes the number of

skip pointers. The swl procedure implements list traversal following the DeutschSchorr-

Waite style. rose-trees are trees with nodes that are allowed to have variable number of

children, typically stored as linked lists, and mcf trees [16] are rose-tree variants where

children are stored in doubly-linked lists with sibling and parent pointers. In order to

3 Our translation preserves the semantics of source programs, subject to CIL’s limitations.



evaluate the performance of our shape synthesis, we re-verified the source programs

against the inferred specifications and listed the verification time (in seconds) in the

Veri. column and the synthesis times in column Syn.. In total, the specification infer-

ence took 8.37s while the re-verification4 took 8.25s.

The experiments showed that our tool can handle fairly complex recursive methods,

like trees with linked leaves. It can synthesize shape abstractions for a large variety of

data structures; from list and tree variants to combinations. Furthermore, the tool can

infer shapes with mutual-recursive definitions, like the rose-trees and mcf trees.

The normalization phase aims to simplify inferred shape predicates. To evaluate its

effectiveness, we performed the synthesis on two scenarios: without (w/o) and with (w/)

normalization. The number of conjuncts in the synthesized shapes is captured with size

column. The results show that normalization is helpful; it reduces by 68% (169/533)

the size of synthesized predicates with a time overhead of 27% (8.37s/10.62s).

Larger Experiments. We evaluated S2 on real source code from the Glib open source

library [1]. Glib is a cross-platform C library including non-GUI code from the GTK+

toolkit and the GNOME desktop environment. We focused our experiments on

LOC #Proc #Loop #
√

Syn. (sec)

gslist.c 698 33 18 47 11.73

glist.c 784 35 19 49 7.43

gtree.c 1204 36 14 44 3.69

gnode.c 1128 37 27 52 16.34

Fig. 8. Experiments on Glib Programs

the files which implemented heap data

structures, i.e. SLL (gslist.c), DLL (glist.c),

balanced binary trees (gtree.c) and N-

ary trees (gnode.c). In Fig.8 we list for

each file number of lines of code (ex-

cluding comments) LOC, number of pro-

cedures (while/for loops) #Proc (#Loop).

#
√

describes the number of procedures

and loops for which S2 inferred specifica-

tions that guarantee memory safety. S2 can infer specifications that guarantee memory

safety for 89% of procedures and loops (192/216).5

Limitations. Our present proposal cannot handle graphs and overlaid data structures

since our instantiation mechanism always expands into tree-like data structures with

back pointers. This is a key limitation of our approach. For an example, of such a

limitation, see appendix F. For future work, we also intend to combine shape analysis

with other analyses domains, in order to capture more expressive specifications, beyond

memory safety.

8 Related Work and Conclusion

A significant body of research has been devoted to shape analysis. Most proposals are

orthogonal to our work as they focus on determining shapes based on a fixed set of shape

domains. For instance, the analysis in [25] can infer shape and certain numerical prop-

erties but is limited to the linked list domain. The analyses from [31,11,4,15,3,23] are

tailored to variants of lists and a fixed family of list interleavings. Likewise, Calcagno

4 Due to our use of sound inference mechanisms, re-verification is not strictly required. We

perform it here to illustrate the benefit of integrating inference within a verification framework.
5 Our current implementation does not support array data structures. Hence, some procedures

like g tree insert internal cannot be verified.



et al. [7] describes an analysis for determining lock invariants with only linked lists.

Lee et al. [21] presents a shape analysis specifically tailored to overlaid data structures.

In the matching logic framework, a set of predicates is typically assumed for program

verification [30]. The work [2] extends this with specification inference. However, it

currently does not deal with the inference of inductive data structure abstractions.

The proposal by Magill et al. [25] is able to infer numerical properties, but it is still

parametric in the shape domain. Similarly, the separation logic bi-abduction described

in [6,17] assumes a set of built-in or user-defined predicates. Xisa, a tool presented

by Rival et. al. [8], works on programs with more varied shapes as long as structural

invariant checkers, which play the role of shape definitions, are provided. A later ex-

tension [29] also considers shape summaries for procedures with the additional help of

global analysis. Other similarly parameterized analysis includes [13]. In comparison,

our approach is built upon the foundation of second-order bi-abductive entailment, and

is able to infer unknown predicates from scratch or guided by user-supplied assertions.

This set-up is therefore highly flexible, as we could support a mix of inference and

verification, due to our integration into an existing verification system.

With respect to fully automatic analyses, there are [5], [16] and the Forester sys-

tem [18]. Although very expressive in terms of the inferred shape classes, the analysis

proposed by Guo et al. [16] relies on a heavy formalism and depends wholly on the

shape construction patterns being present in the code. They describe a global analysis

that requires program slicing techniques to shrink the analyzed code and to avoid noise

on the analysis. Furthermore, the soundness of their inference could not be guaranteed;

therefore a re-verification of the inferred invariants is required. Brotherston and Goro-

giannis [5] propose a novel way to synthesize inductive predicates by ensuring both

memory safety and termination. However, their proposal is currently limited to a sim-

ple imperative language without methods. A completely different approach is presented

in the Forrester system [18] where a fully automated shape synthesis is described in

terms of graph transformations over forest automata. Their approach is based on learn-

ing techniques that can discover suitable forest automata by incrementally constructing

shape abstractions called boxes. However, their proposal is currently restricted both in

terms of the analysed programs, e.g. recursion is not yet supported, and in terms of the

inferred shapes, as recursive nested boxes (needed by tll) are not supported.

In the TVLA tradition, [28] describes an interprocedural shape analysis for cut-free

programs. The approach explores the interaction between framing and the reachability-

based representation. Other approaches to shape analysis include grammar-based infer-

ence, e.g. [22] which relies on inferred grammars to define the recursive backbone of

the shape predicates. Although [22] is able to handle various types of structures, e.g.

trees and dlls, it is limited to structures with only one argument for back pointers. [24]

employs inductive logic programming (ILP) to infer recursive pure predicates. While, it

might be possible to apply a similar approach to shape inference, there has not yet been

any such effort. Furthermore, we believe a targeted approach would be able to easily

cater for the more intricate shapes. Since ILP has been shown to effectively synthesize

recursive predicates, it would be interesting to explore an integration of ILP with our

proposal for inferring recursive predicates of both shape and pure properties. A recent

work [14] that aims to automatically construct verification tools has implemented vari-



ous proof rules for reachability and termination properties however it does not focus on

the synthesis of shape abstractions. In an orthogonal direction, [10] presents an analy-

sis for constructing precise and compact method summaries. Unfortunately, both these

works lack the ability to handle recursive data structures.

Conclusion We have presented a novel approach to modular shape analysis that can

automatically synthesize, from scratch, a set of shape abstractions that are needed for

ensuring memory safety. This capability is premised on our decision to build shape

predicate inference capability directly into a new second-order bi-abductive entailment

procedure. Second-order variables are placeholders for unknown predicates that can

be synthesized from proof obligations gathered by Hoare-style verification. Thus, the

soundness of our inference is based on the soundness of the entailment procedure it-

self, and is not subjected to a re-verification process. Our proposal for shape analysis

has been structured into three key stages: (i) gathering of relational assumptions on un-

known shape predicates; (ii) synthesis of predicate definitions via derivation; and (iii)

normalization steps to provide concise shape definitions. We have also implemented a

prototype of our inference system into an existing verification infrastructure, and have

evaluated on a range of examples with complex heap usage patterns.
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A Second-Order Bi-Abduction: Auxiliary functions

reach(S, κ∧π, I) “carves” from κ the abstractions of the memory locations reachable
from pointer variables in the set S without traversing variables in I. We also locate a set
of heap guards to help with the instantiation of parameters w̄# that are not included in x̄

but are connected via heap locations. Guard formula κg∧πg is the formula that related to
the mismatched RHS but has not been consumed by the assumption. Finally, we have:

reach(S, v7→c(w̄)∗κ∧π, I) =










v7→c(w̄)∗reach(S, κ∧π, I) ∀vi∈{v}∪w̄ · ptr(vi)⇒ bounded(vi, v7→c(w̄)∗κ∧π, I)

P(w̄)∗reach(S, κ ∧ π, I) ∀vi ∈ w̄ · ptr(vi)⇒ bounded(vi, P(w̄)∗κ ∧ π, I)

emp otherwise



Similarly we define bounded(v, κ∧π, I) to hold iff the shape pointed to by v is pre-

cisely defined by the frontier I. That is, either of the conditions below holds:

1. v is on the frontier: v ∈ I
2. v is null: π ⇒ v = NULL

3. v is a dangling variable
4. v7→c(w̄)∈κ and ∀wi∈w̄ · ptr(wi) ∧ bounded(wi, κ ∧ π, I ∪ {v})
5. U(w̄)∈κ , v∈w̄ and a definition for predicate U has already been inferred.

B Further Refinement/Normalization Steps

B.1 Assumption Sorting and Partitioning

In order to allow for a convenient instantiation order, we sort and group together each

set of relational assumptions pertaining to the same predicate, through sort-group(R).

Intuitively, the call to sort-group(R) will sort assumptions relevant to each predicate

according to the following pattern:

1. H(. . .) ∧ π @∆⇒ H2(. . .)
2. H(. . .)⇒ H2(. . .)
3. H(. . .) ∗∆⇒ H2(. . .)

4. H(. . .)⇒ ∆
5. H(. . .) ∧ π ⇒ ∆
6. ∆⇒ G(. . .)

The first four forms could be used directly for in-lining if they are not self-recursive.

Guarded assumptions (even if disjunctive but not self-recursive) are given high priority

to facilitate their early removal by inlining. The fifth form leads to disjunctive recursive

formula, and is not inlined for conciseness reason. As mentioned, post-predicates are

only processed after all the pre-predicates have been synthesized. In order to decrease

the number of assumptions that need to be considered during the derivation, we will try

to partition the assumptions relevant to a predicate into assumptions that will be used

in the synthesise process and assumptions that will be treated as proof obligations to be

discharged after the predicate synthesis. Note that we order pre-predicates before post-

predicates, and would synthesize the simpler predicates, before the more complex ones.

Also, the processing of post-obligation for a post-predicate is done after the synthesis

of the respective post-predicate. This could generate extra assumptions for other un-

sythesised predicates.

B.2 Obligations for Pre-Predicates

On a similar note, newly created memory locations that were neither abstracted by a
pre-predicate nor a post-predicate, could be passed as arguments to a recursive call.
One example of an assumption resulting from such a scenario is:

x7→snode(n) ∗ Hn(n)⇒ H(x)

Catering for such assumptions follows on a similar scenario as the one for post-
predicate obligations: handling will be delayed until a definition for the H predicate has
been synthesized which in turn can be used by our second order bi-abductive entailment
to generate constraints for the remaining pre-predicates, e.g. Hn. That is:

[syn-Pre-Obl]
∆⇒ Upre(v̄) (Upre(v̄)≡∆Upre) ∈ Γ ∆ ⊢∆Upre ❀ (R, ∆f)

R



B.3 Obligation for Post-Predicates

Memory locations abstracted by post-predicates may be further accessed after a recur-
sive call. This may lead to relational assumptions of the following form.

U
post(. . .) ∧ π ⇒ ∆

We regard this as an obligation that has to be proven, and at the same time it could also
be used to infer the definition of unknown post-predicates that were generated. As an
example, consider the following post-predicate relational obligation:

G(r, x)∧x6=NULL⇒ r7→snode(rn) ∗ Gr(rn, x#)∗Gx(x, r#)

This obligation introduces two extra unknown post-predicates Gr and Gx. In order to
synthesize definitions for them, it is possible to leverage on earlier synthesized defini-
tions for G. Thus, if such a definition exists, say:

G(r, x) ≡ x7→snode(NULL) ∧ r=x ∨ x7→snode(xn) ∗ Gx(xn, r) ∗ r7→snode(NULL)

We can re-use our second-order entailment to prove the earlier post-predicate obliga-
tion, which generates the following set of relational assumptions on Gr and Gx.

r=NULL ⇒ Gr(r, )
x=r ∧ x6=NULL ⇒ Gx(x, r)
x7→snode(xn) ∗ Gx(xn, r) ⇒ Gx(x, r)

Subjecting them to synthesis for post-predicate yields:

Gr(r, ) ≡ r=NULL

Gx(x, r) ≡ x=r ∧ x6=NULL ∨ x7→snode(xn) ∗ Gx(xn, r)

More formally,

[syn-Post-Obl]
Upost(v̄)∧π ⇒ ∆ (Upost(v̄)≡∆Upost) ∈ Γ ∆Upost∧π ⊢∆❀ (R, ∆f)

R

B.4 Predicate Inlining

As derived predicates may contain heap guards, we may remove them by inlining pred-

icate occurrences with the relevant heap context.

[syn-inline]
U
pre

d (x̄) ≡ ∆1 @ (κ1∧π1) ∨ . . . ∨∆n @ (κn∧πn)
Upre(x̄)∧πa⇒ (Upred (x̄) ∗ κ∧π)@ (κg∧πg)
S1 = {∆i∗∆r∗κi | κ∧π ⊢ κi∧πi ❀ (∅, ∆r)}

S2 = {κ∗∆i∧π @ (κi∧πi) | SAT(κ∧κi∧π∧πi), κ∧π 6⊢κi∧πi}

Upre(x̄)∧πa⇒
∨

∆∈S1∪S2
(∆@ (κg∧πg))

Formally, such predi-

cate inlining can be car-

ried out by the [syn-inline]

rule. Inlining serves two

purposes: (i) allow instanti-

ation of back pointers with

the use of heap guards;

(ii) minimize the number of

predicates a definition relies on. As an eager optimization, the inlining discards infeasi-

ble disjuncts in which the context contradicts the guard and also drops the guard where

it is already satisfied.



B.5 Conjunctive Unification

When describing the pre-predicate derivation, we observed that there is a need for a
normalization operation for formulas ∆1 ∧ ∆2 to ensure the result is within the logic
fragment described in Sec. 2. We obtain this normalization through a conjunctive unifi-
cation step,⇒v̄

∧. Informally, in order for ∆1 ∧∆2 to be satisfiable, to describe at least
one feasible heap, it is necessary that the shapes described by ∆1 and ∆2 agree when
describing the same memory locations. Based on this observation, it is possible to con-
struct a possibly stronger approximation for ∆1 ∧∆2 expressed in our logic fragment
by unifying the common heap locations as follows:

π ∧∆⇒v̄
∧ (∆ ∧ π, []) ∆ ∧ π ⇒v̄

∧ (∆ ∧ π, [])

∆1 ∧∆3 ⇒
v̄
∧ (∆5,S1) ∆2 ∧∆4 ⇒

v̄
∧ (∆6,S2)

(∆1 ∨∆2) ∧ (∆3 ∨∆4)⇒
v̄
∧ (∆5 ∨∆6,S1 ∪ S2)

P is known x∈v̄ ȳ ∩ v̄ = ∅ ρ=[ȳ 7→ z̄]
∆1 ∧ ρ ∆2 ⇒

v̄∪z̄
∧ (∆3,S)

P (x, z̄) ∗∆1 ∧ P (x, ȳ) ∗∆2 ⇒
v̄
∧ (P (x, z̄) ∗∆3,S)

U1, U2 are dangling x ∈ v̄ ρ = [ȳ 7→ z̄] ȳ ∩ v̄ = ∅
∆1 ∧ ρ ∆2 ⇒

v̄∪z̄
∧ (∆3,S) S1 = S∪{U1≡U2}

U1(x, z̄)∗∆1 ∧ U2(x, ȳ)∗∆2 ⇒
v̄
∧ (U1(x, z̄)∗∆3,S1)

x∈v̄ ρ = [ȳ 7→ z̄] ȳ∩v̄=∅ ∆1 ∧ ρ ∆2 ⇒
v̄∪z̄
∧ (∆3,S)

x 7→c(z̄) ∗∆1 ∧ x 7→c(ȳ) ∗∆2 ⇒
v̄
∧ (x 7→c(z̄) ∗∆3,S)

To streamline the unification process, the⇒∧ operation is parameterized with a set of

variables v̄ which denotes the set of possibly common memory locations. We seed this

parameter initially with the set of arguments of the predicate under construction.

In the process of unifying predicate instances or heap nodes, the transformation on

one hand modifies the formulas by applying a substitution of the arguments, and on

the other constructs extra constraints on dangling predicates, thus strengthening the re-

sult. We observe however that this is not affecting the soundness of the result as this

strengthening is restricted to pre-condition predicate definitions. By imposing an equal-

ity constraint on dangling predicates the resulting definitions become more concise,

with fewer extra predicates being synthesized.
Naturally, this strengthening may lead to a contradiction which we will consider as

a failure of the shape analysis, due to contradictory scenarios. For example:

x=NULL ∧ x7→node(p, n)⇒x
∧ (FALSE , [])

B.6 Disjunctive Unification

We propose to apply disjunctive unification to derive more concise definitions for post-
predicate. The aim here is to factor out common constraints on disjunctive branches of
a given post-predicate, so that common heap terms in disjunct can be abstracted:

x7→c(ȳ) ∗ ∆1 ∨ x7→c(ȳ) ∗ ∆2 ⇒ U(x, ā)⇒∨

{

x7→c(ȳ)∗R(x, ā, ȳ)⇒ U(x, ā)
∆1 ∨ ∆2 ⇒ R(x, ā, ȳ)



B.7 Normalization of Shape Predicates

After we have derived suitable predicate definitions, we proceed with normalization to

convert each predicate definition to its most concise form. Our current method uses four

key steps:

function PRED NORM(Γ )

Γ1 ← process-dangling-and-unused-preds Γ

Γ2 ← eliminate-useless-parameters Γ1

Γ3 ← perform-predicate splitting on Γ2

return reuse-predicates Γ3

end function

Detecting and Eliminating Dangling Predicates We have seen how relational as-

sumptions are soundly transformed into predicate definitions. However, it is still pos-

sible for some pre-predicates not to have any definition. As mentioned in Sec. 3, these

dangling predicates denote fields that were not accessed. Though it is safe to drop such

predicates (by frame rule), we keep them to capture linking information between pre-

and post-conditions.
In this predicate normalization step, we associate each dangling predicate U(x, ..)

encapsulating a pointer that is instantiated and not an argument of the current method,
with a logical variable DU denoting such a predicate instance. With this extra notation,
in effect, we are making explicit that the addresses pointed to by such fields have neither
been read nor written to during the execution of its method. Thus, these logical vari-
ables appear in the precondition, and after the execution, in the postcondition. Notice
that the marking of pointers as dangling is guided by the context and thus reflects the
access patterns. We can formalize these steps as follows:

U(ȳ) ≡ (Ud(x, v̄)∗κ∧π)@ (κg∧πg) ∨ Φg x 6∈ ȳ Ud(x, v̄) ≡ ⊤

U(ȳ) ≡ ([x 7→DUd ](κ∧π))@ (κg∧πg) ∨ Φg

Eliminating Useless Parameters We observe that there are cases in which predicate

arguments are not used in the synthesized definitions. For our sll2dll example (Sec. 3),

the second parameter q in the derived pre-predicate is redundant. For the tll example

outlined in Sec.1, the last two parameters of the derived pre-predicate are redundant.
In order to simplify the definitions and improve predicate reuse, we propose to de-

tect and eliminate such arguments. For a given predicate definition, P(x̄) ≡ ∆, we can
discover if any constraint in the predicate body involves a parameter through a stan-
dard, sound flow analysis. Once a set of candidate arguments, z̄, has been identified, we
construct a new unknown predicate Uz(x̄

′) where x̄′ = x̄ \ z̄ which can then be instan-
tiated by running the bi-abductive entailment check on the entailment P′(x̄) ⊢ Uz(x̄

′),
where P′(x̄) ≡ ∃z̄.∆. This would gather the necessary set of assumptions on Uz that can
provide a definition for the new predicate without the useless argument(s). Followed
by a check that with the inferred definition Uz(x̄)

′⊢P′(x̄). Thus, ideally, the resulting
definitions would follow: P(x̄) ≡ Uz(x̄

′), Uz(x̄
′) ≡ ∆′ Using this step, we can obtain a

simpler pre-predicate for tll (Sec 1):

H(x,p,t) ≡ Hf(x)
Hf(x) ≡ x7→tree(Dp,Dl,r,Dn) ∧ r=NULL ∨ x7→tree(Dp,l,r,Dn)∗Hf(l)∗Hf(r) ∧ r 6= NULL



Reusing Predicates In order to derive more concise predicate definitions, we propose

an equivalence detection step that would try and match a newly inferred definition with a

definition previously provided or inferred. We leverage on our second-order entailment

prover to perform this task, but limit its folding steps to identity matching of predi-

cates that may possibly be equivalent. We also use an analysis to pre-determine those

predicates that are unlikely to be equivalent, or have already been processed as such.

For any two synthesized predicates U1(v̄) and U2(w̄), we first align their parameters, and

then prove two entailments unroll[U1(v̄)] ⊢ U2(w̄) and unroll[U2(w̄)] ⊢ U1(v̄). (Each unroll

replaces a predicate instance by its definition. It ensures that our inductive proof is well-

founded.) If both entailments fail, we assert the pair of predicates to be disequal. If only

one of the entailments succeeds, we assert a predicate subsumption has been detected. If

both succeed and return a further set of possibly equivalence pairs, we proceed to prove

the equivalence of pairs from the new set. When no more pairs of possibly equivalent

predicates are found, we assert U1(v̄)↔ U2(v̄) to indicate the equivalence of the sets of

pairs of predicates that we have just proven.

Predicate Splitting Here we illustrate a split-predicate tactic to derive, where possible,

lemmas of the following form: U(x, y) → U1(x)∗U2(y) which denotes known facts

about valid implication over heap formula that can be used by the entailment checker.

For example, consider a predicate that captures x and y, two linked lists of same length:

twosame(x, y) ≡ x=NULL∧y=NULL∨x7→snode(xn)∗y7→snode(yn)∗twosame(xn, yn)
To explore such splitting, we can follow the example of useless parameter elimination
where our second-order bi-abductive entailment is again used to infer definitions for
unknown predicates, U1 and U2. Once these definitions are derived, we can even use
the same entailment check to determine if the converse implication twosame(x, y) ←
U1(x)∗U2(y) holds. For this example, we can only derive 6:

twosame(x, y) → U1(x)∗U2(y)
U1(x) ≡ x=NULL ∨ x7→snode(n) ∗ U1(n)
U2(x) ≡ x=NULL ∨ x7→snode(n) ∗ U2(n)

Now, two resulting predicates U1 and U2 have more chances to be matched/reused with

given library predicates (e.g. ll in Sec. 4).

C S2 Virtual Machine (S2-VM)

There are two options to reproduce the results in Sec. 7:

1. Testing programs through the tool’s website (by clicking the URL given in Sec 1).

2. Setting up and conducting the benchmark on a virtual machine S2-VM as suggested

in what follows.

6 We only derive a weakening lemma that can be applied to post-condition, but not to pre-

condition. For safely splitting pre-condition of twosame which captures two lists of the same

length, we will need to extend our inference to capture size properties on lists.



C.1 Set up The Virtual Machine

– Download it by clicking the URL below. Note to copy-and-paste the link may not

work correctly (in which case, please ensure the character ∼ before project is

shown properly in the browser).

• http://loris-7.ddns.comp.nus.edu.sg/˜project/s2/beta/s2.ova

• checksum of s2.ova file: 5874796047da26ce53569930d3ae183e

• virtual machine player: Oracle VM VirtualBox 4.3.6 (or VMware Player 6.0.1)

– Open Terminal in Desktop of S2-VM. Set the working directory to Desktop/s2:

> cd Desktop/s2

– Build S2 from the source code:

> make hip

– Copy s2 binary into cav14/bin folder:

> cp hip cav14/bin

C.2 Reproduce the Experimental Results in S2-VM

Assume the current directory of the terminal is Desktop/s2

– Set the directory to cav14 (which contains all examples in the Experiments):

> cd cav14

– Please refer to README file for the structure of the cav14 folder.

– Synthesize small benchmark in Table 1 (Sec 7) without normalization:

> cd small

> ./run-wo.sh

> cd ..

– Synthesize small benchmark in Table 1 (Sec 7) with normalization:

> cd small

> ./run-norm.sh

> cd ..

– Verify small benchmark in Table 1(Sec 7):

> cd small/veri

> ./veri.sh

> cd ../..

– Analyze Glib Programs:

> cd glib

> ./run-glib.sh

> cd ..

http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/s2.ova


D Two More Examples

We provide further illustrations of our proposal through two examples to highlight key
features of our shape inference mechanism.

void append(struct node ∗ x, struct node ∗ y)
requires H(x, y#) ensures G(x, y#)
{if (x->next) append(x->next, y);
else { x->next = y; y->prev = x; } }

The append method joins two doubly-linked lists. To guide the shape synthesis, the
initial stub specification is pre-analysed with # annotations. Thus, by the same process
described in previous sections the following relational assumptions are inferred:

1 H(x,y#)⇒ x7→node(xp,xn)∗Hp(xp,y#)∗Hn(xn,y#)∗Hy(y,x#)
2 Hn(xn,y#)∗Hy(y,x#)∧xn 6=NULL⇒ H(xn,y#)
3 Hy(y,x#)⇒ y7→node(yp,yn)∗Hyp(yp,x#)∗Hyn(yn,x#)
4 Hn(xn,y#)∧xn=NULL⇒ emp

5 Hp(xp,y#)∗x7→node(xp,xn)∗G(xn,y#)∧xn 6=NULL⇒ G(x,y#)
6 x7→node(xp,y)∗y7→node(x,yn)∗Hyn(yn,x#)∗Hp(xp,y#)⇒G(x,y#)

We can then synthesize the following predicate definitions:

H(x, y)≡x7→node(Dp, xn)∗Hn(xn)∗y7→node(Dyp,Dyn)
Hn(xn)≡emp∧xn=NULL ∨ xn 7→node(Dp, xnn)∗Hn(xnn)

G(x, y)≡x7→node(Dp, y)∗y7→node(x,Dyn)
∨ x7→node(Dp, xn)∗G(xn, y)∧xn 6=NULL

Our shape inference mechanism manages to infer a precise (weak) pre-condition

which only requires a singly-linked list for the first parameter, and a single node for

the second parameter without enforcing unnecessary constraints on the rest of the lo-

cations reachable from the second parameter. Furthermore, the derived post-predicate

describes a non-empty recursive list segment joined with the structure described by the

second parameter. Through the use of dangling references, the derived specification

permits cyclic data structures for the second parameter, and moreover guarantees that

only its first node is being changed. This more precise pre/post specification subsumes

the specification which uses two doubly-linked lists for the two parameters.

To illustrate a more complex data structure, consider the following mutual-recursive
methods to validate a rose tree, whose children are linked via a doubly-linked list with



parent pointers,

struct mtree {int val; struct mnode∗ children; }
struct mnode { struct mtree∗ child; struct mnode∗ prev;

struct mnode∗ next; struct mtree∗ parent; }
bool c tree (struct mtree∗ t)
requires H1(t) ensures G1(t) ∧ res;
{ if (t->children == null) return true;
else return c child(t->children, NULL, t); }

bool c child(struct mnode∗ l, struct mnode∗ prv,
struct mtree∗ par)

requires H2(l, prv, par) ensures G2(l, prv, par) ∧ res;
{ if (l == null) return true;
else if (l->parent == par && l->prev == prv)

return c child(l->next, l, par) && c tree(l->child);
else return false; }

This checker code is special in that we are using it to validate some expected data
structure. We use it here primarily for evaluating the precision of our synthesis method.
Notice the use of mixed constraints7 e.g. G1(t)∧res, which requires both inference and
verification to work together. This comes naturally from our integration of second-order
bi-abduction into an existing separation logic verifier with proving capability. Essen-
tially, this code is checking that each tree node contains a pointer to a null-terminated
doubly-linked list, with pointers to parent node. Our approach is able to derive the fol-
lowing precise and concise predicate definitions. We achieve this feat by using normal-
ization techniques which unify disjuncts and semantically-equivalent predicates, where
possible.

H1(t)≡t7→mtree(v,c)∗H2(c,NULL,t)

H2(l,b,p) ≡ emp∧l=NULL∨H2(nl,l,p)∗l7→mnode(cl,b,nl,p)∗cl 7→mtree(v,c)∗H2(c,NULL,cl)

G1(t)≡H1(t)

G2(l, b, p)≡H2(l, b, p)

E Expanded Soundness

Proof for Lemma 1 We will show that for all ∆ante and ∆conseq such that

∆ante ⊢ ∆conseq❀ (R, ∆frame)

and Γ={U1(v̄1)≡∆1, ..Un(v̄n)≡∆n}, a set of instantiations for unknown predicates such

that R(Γ ) then the entailment Γ :∆ante ⊢ ∆conseq∗∆frame holds. We will show by

structural induction on ∆conseq.

7 C languages uses integer for boolean values, which gets translated to boolean type in our core

language.



Due to the construction of the ∆ante ⊢ ∆conseq❀ (R, ∆frame) procedure as an

extension of an existing entailment procedure with frame inference, for all ∆ante and

∆conseq not involving unknown predicatesR = true and Γ :∆ante ⊢ ∆conseq∗∆frame.

Bellow we consider the cases that actually involve unknown predicates. These cases

fall under two categories:

– ∆ante = U(r, v̄i, v̄n#)∗κ1∧π1 and ∆conseq = κs∗κ2∧π2 where κs ≡ r7→c(d̄, p̄)
or κs ≡ P(r, d̄, p̄). By hypothesis ∆ante ⊢ ∆conseq❀ (R, ∆frame). Then, as de-

scribed in Sec.6 the [SO-ENT-UNFOLD] step must hold ensuring the following as-

sertion holds:

κ1∗∆dangl∗∆rem∧π1 ⊢ κ2∧π2❀ (R′, ∆frame)

whereR = R′ ∧ (U(r, v̄i, v̄n#) ∧ πa⇒ κs ∗∆dangl ∗∆rem ∧ πc) It follows from the

structural induction hypothesis that:

Γ :κ1∗∆dangl∗∆rem∧π1 ⊢ (κ2∧π2) ∗ ∆frame (1)

FromR(Γ ) it follows that

Γ :U(r,v̄i,v̄n#)∧πa⊢κs∗∆dangl∗∆rem∧πc (2)

From equations 1 and 2 it follows that Γ :∆ante ⊢ ∆conseq ∗∆frame.

– ∆ante=κ1∧π1 and ∆conseq=Uc(w̄,z̄#)∗κ2∧π2.

Let πr = slice(r̄, π1) and πw = slice(w̄, π1).
By hypothesis :∆ante ⊢ ∆conseq❀ (R, ∆frame).
Then, as described in Sec.6 the [SO-ENT-FOLD] step must hold ensuring the fol-

lowing assertions hold:

• κ1 = κ11∗κ12
• κ12 ∧ π1 ⊢ κ2 ∧ π2❀ (R′, ∆frame) which by structural induction leads to

Γ:κ12 ∧ π1 ⊢ (κ2 ∧ π2) ∗ ∆frame
• R=(κ11∧πw⇒Uc(w̄, z̄#) @κg∧πr) ∧R′ which byR(Γ ) leads to:

Γ:κ11∧πw ⊢ Uc(w̄, z̄#) @κg∧πr Note that by the definition in Sec.2 for guarded

assumptions, it follows that ∆@ (κg∧πr)∗κg∧πr is equivalent with ∆∗(κg∧πr).

From the above three assertions it follows that Γ :∆ante ⊢ ∆conseq ∗∆frame

�

Proof for Lemma 2 We will show that given a set of relational assumptions R and

one of the synthesis rules is applied to obtain R′ then if exists Γ such that R′(Γ ) then

R(Γ ).

– If [syn-base] was applied to R ∧ (Upre(x̄)∗κ∧π⇒Upost(ȳ)) then the resulting as-

sumptions are either:

1. R′=R∧ (Upre(x̄)∧π′⇒emp) ∧ (κ∧π⇒ Upost(ȳ))
OR

2. R′=R∧ (Ufr(x̄)⇒⊤) ∧ (Upre(x̄)⇒Ufr(x̄) @ (κg∧πg))∧
(Upre(x̄)∗κ∧π⇒ Upost(ȳ)) where Ufr is a fresh unknown predicate



If there exists Γ such that R′(Γ ) then by definition, using the Γ interpretation for

the unknown predicates then either:
1. Γ:Upre(x̄)∧π′ ⊢ emp and Γ:κ∧π ⊢ Upost(ȳ) and since by construction π⊢π′ it

follows that Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) thusR(Γ ).
2. Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) and Γ:Upre(x̄) ⊢ Ufr(x̄) @ (κg∧πg) and Γ:Ufr(x̄) ⊢ ⊤

leading to Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) ∗ ⊤@ (κg∧πg) which by construction of

κg∧πg and σ2 leads to Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) and thusR(Γ ).
– If [syn-case] was applied to: R ∧ (U(x̄)∧π1⇒∆1 @ ∆1g)∧(U(x̄)∧π2⇒∆2 @ ∆2g). To

generate:

R′ = R∧ (U(x̄)∧π1∧¬π2⇒∆1 @∆3g)∧
(U(x̄)∧π2∧¬π1⇒∆2 @∆3g) ∧ (U(x̄)∧π1∧π2⇒∆3 @∆3g)

with π1∧π2 6⇒FALSE and ∆1∧∆2⇒x̄
∧∆3 and ∆1g∧∆2g⇒x̄

∧∆3g and exists a Γ such

thatR′(Γ ). FromR′(Γ ) it follows that:

Γ :U(x̄)∧π1∧¬π2 ⊢ ∆1 @∆3g Γ :U(x̄)∧π2∧¬π1 ⊢ ∆2 @∆3g

Γ :U(x̄)∧π1∧π2 ⊢ ∆3 @∆3g

We need to show that: Γ :U(x̄)∧π1 ⊢ ∆1 @∆1g and Γ :U(x̄)∧π2 ⊢ ∆2 @∆2g .

Note that by the definition of the conjunctive unification, it follows that if ∆1∧∆2⇒x̄
∧∆3

then Γ :∆3 ⊢ ∆1 and Γ :∆3 ⊢ ∆2. Thus from Γ:U(x̄)∧π1∧π2 ⊢ ∆3 @ ∆3g and fol-

lows that: Γ :U(x̄)∧π1∧π2 ⊢ ∆1 @∆3g and Γ :U(x̄)∧π1∧π2 ⊢ ∆2 @∆3g

Thus it follows: Γ :U(x̄)∧π1∧(¬π2 ∨ π2) ⊢ ∆1 @∆3g

which simplifies to Γ :U(x̄)∧π1 ⊢ ∆1 @∆3g which by the construction of ∆3g leads

to Γ :U(x̄)∧π1 ⊢ ∆1 @∆1g . Similarly we obtain: Γ :U(x̄)∧π2 ⊢ ∆2 @∆2g .

– [syn-group-pre] The proof obligation reduces to: if there exists Γ such that

Γ :U(v̄) ∧ (π1∨π2) ⊢ Φg
1∧π1 ∨ Φg

2∧π2 and π1∧π2 ⊢ FALSE then Γ :U(v̄)∧π1 ⊢
Φg

1 and Γ :U(v̄)∧π2 ⊢ Φg
2. It follows that Γ :U(v̄)∧π1 ⊢ Φg

1∧π1∨Φg
2∧π2 and

Γ :U(v̄)∧π2 ⊢ Φg
1∧π1∨Φg

2∧π2. And since π1∧π2 ⊢ FALSE it follows that

Γ :U(v̄)∧π1 ⊢ Φg
1∧π1 and Γ :U(v̄)∧π2 ⊢ Φg

2∧π2.

– [syn-group-post] It follows trivially that Γ :∆a ⊢ Upost(v̄) and Γ :∆b ⊢ Upost(v̄)
from Γ :∆a ∨∆b ⊢ Upost(v̄).

– if [syn-inline] was applied to :R∧(Upre(x̄)∧πa ⇒ (U
pre
d (x̄) ∗ κ∧π)@ (κg∧πg)) re-

sulting in the assumption set:R′ = R∧(Upre(x̄)∧πa⇒
∨

∆i∈S1∪S2
(∆i @ (κg∧πg)))

when

U
pre
d (x̄) ≡ ∆1 @ (κ1∧π1) ∨ . . . ∨∆n @ (κn∧πn)
S1 = {∆i∗∆r∗κi | κ∧π ⊢ κi∧πi ❀ (∅, ∆r)}
S2 = {κ∗∆i∧π @ (κi∧πi) | SAT(κ∧κi∧π∧πi), κ∧π 6⊢κi∧πi}

We need to prove that if exists Γ such thatR′(Γ ) then,R(Γ ). That is:

Γ :Upre(x̄)∧πa ⊢ (U
pre
d (x̄) ∗ κ∧π)@ (κg∧πg). Which by using the U

pre
d definition

translates in having to prove: Γ:Upre(x̄)∧πa ⊢
∨

i∈1...n((∆i @ (κi∧πi) ∗ κ∧π) @ (κg∧πg))
FromR′(Γ ) it follows that: Γ :Upre(x̄)∧πa⊢

∨
∆i∈S1∪S2

(((κ∧π)∗∆i)@ (κg∧πg)).
We will show that:

∨

∆i∈S1∪S2

(((κ∧π)∗∆i)@ (κg∧πg)) ≡
∨

i∈1...n

(∆i @ (κi∧πi) ∗ κ∧π)@ (κg∧πg)



Observe that by the definition of the guard assertion, (∆i @ (κi∧πi) ∗ κ∧π) a RHS

disjunction where the guard κi∧πi contradicts the context κ∧π is equivalent to

FALSE and thus can be discarded, leaving only disjuncts that do not contradict the

context. Note that by construction, S1 ∪ S2 denotes exactly that set. Furthermore,

by the definition of the guarded assumption, assertions (∆i @ (κi∧πi) ∗ κ∧π) in

which κ∧π ⊢ κi∧πi can be reduced to ∆i ∗ κ∧π. Observe that the result of the

application of the above two equivalence preserving simplification steps on the

RHS is identical to the LHS. Thus the required disjunction equivalence holds.

Proof for Lemma 3 Follows from the observation that there are only two rules generat-

ing predicate definitions: [syn-pre-def ] and [syn-post-def ]. Each applicable only if there

exists only one assumption corresponding to the predicate that is currently being de-

rived. Each rule generates exactly the predicate definition that would satisfy the unique

assumption.

Proof for Lemma 4 First, we observe that the algorithm in Fig.7 finishes only when all

assumptions have been catered for: assumptions used for synthesis have been reduced to

a unique assumption which becomes the predicate definition; assumptions not included

in the synthesis are discharged by an entailment step. Thus by the previous lemmas and

the soundness of the underlying entailment checker the resulting definitions satisfy all

the initial assumptions.

Second, we will show that all normalization steps are meaning preserving:

– Dangling elimination: We need to show that if Ud(x, v̄) ≡ ⊤ and x 6∈ ȳ then:

U(ȳ) ≡ ([x 7→DUd ](κ∧π))@ (κg∧πg) ∨ Φg

is equivalent to:

U(ȳ) ≡ (Ud(x, v̄)∗κ∧π)@ (κg∧πg) ∨ Φg

We first observe that variables local to the predicate definition, not part of the pred-
icate arguments, are implicitly existentially quantified.As mentioned, we use the
DUd notation as a visual aid, to identify an instance of the predicate Ud whose root
pointer x is reachable but has been neither read nor written to. By expanding the
notation, the equivalence to be proven becomes:

∃x.(Ud(x, v̄)∗κ∧π)≡∃fv.[DUd 7→ fv]([x7→DUd ](κ∧π))∗Ud(fv2, . . .)

By applying the predicate definitions:

∃x.(⊤∗κ∧π)≡∃fv.[DUd 7→ fv]([x7→DUd ](κ∧π))∗⊤

Which holds trivially.

– Eliminating useless parameters: We need to show that if at this step a predicate

P(x̄) ≡ ∆1 is distilled into Q(x̄′) ≡ ∆2 then P′(x̄) ≡ Q(x̄′) that is, ∆1 holds iff ∆2

holds. By construction x̄′ = x̄ \ z̄ and ∃z̄.∆1 ⊢ ∆2 and also ∆2 ⊢ ∃z̄.∆1 which

leads to ∆2 ≡ ∃z̄.∆1 and by the soundness of the flow analysis used to detect that

variables z̄ are not used in ∆1 it follows that ∆1 ≡ ∃z̄.∆1.



– Re-using predicates: We need to show that if at this step a predicate P(x̄) ≡ ∆1

is found to be equivalent with Q(x̄′) ≡ ∆2 then ∆1 holds iff ∆2 holds. By the

premise of this normalization step, ∆1 ⊢ Q(x̄′) and also ∆2 ⊢ P(x̄) which leads to

∆2 ≡ ∆1.

– Predicate splitting: Soundness follows from the construction. Given a predicate

P(x̄) we need to show that if the bi-abduction succeeds in discovering definitions for

U1(x̄) and U2(x̄) such that P(x̄) ⊢ U1(x̄) ∗ U2(x̄) and if the derived predicate defini-

tions can be used to prove P(x̄) ≡ U1(x̄) ∗ U2(x̄) which follows from the soundness

of the bi-abduction and of the entailment methods.

F Limitation Example

To show limitation of our current proposal, we highlight an example in Fig. 9 where we

are currently unable to prove memory safety. The lists l1 and l2 are actually from over-

lapping heap memory since they are computed from the same list, list.

struct GSList∗
g slist sort real(struct GSList∗ list, ...)
{ struct GSList ∗l1, ∗l2;
if (!list) return NULL;if(!list->next)

return list;
l1 = list; l2=list->next;
while ((l2=l2->next) 6= NULL){
if ((l2=l2->next) == NULL) break;
l1=l1->next; } //failed precondition

l2=l1->next; ...}

Fig. 9. g slist sort real from gslist.c

Our current modular procedure infers
two disjoint lists as pre-condition of
the loop, with l1 being longer than l2

through a composite predicate (similar
to the zip example). Precondition of
this loop cannot be currently proven in-
side g slist sort real. To analyse this
example successfully, our current tool
would have to be extended to infer im-
mutability and size property of heap data
structure, so that certain heap overlaps
can be handled. In particular, we would
need to infer the following more precise

specification:

requires (lseg(l2,NULL,n)@L∧lseg(l1,q,n−1)@L)∧n>0

ensures l′2=NULL∧l′1=q

Here, list segments of l1 and l2 of lengths n and n−1 are overlapping but accessed in

read-mode via the @L annotation. l′1 and l′2 captures the updated variables at exit of

loop. Furthermore, there are other examples which rely on both shape and pure proper-

ties (e.g. sortedness or size) for memory safety.
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